九九热最新网址,777奇米四色米奇影院在线播放,国产精品18久久久久久久久久,中文有码视频,亚洲一区在线免费观看,国产91精品在线,婷婷丁香六月天

2022年高三數(shù)學(xué)總復(fù)習(xí) 函數(shù)的奇偶性教案 理

上傳人:xt****7 文檔編號:105120736 上傳時(shí)間:2022-06-11 格式:DOC 頁數(shù):5 大?。?9.02KB
收藏 版權(quán)申訴 舉報(bào) 下載
2022年高三數(shù)學(xué)總復(fù)習(xí) 函數(shù)的奇偶性教案 理_第1頁
第1頁 / 共5頁
2022年高三數(shù)學(xué)總復(fù)習(xí) 函數(shù)的奇偶性教案 理_第2頁
第2頁 / 共5頁
2022年高三數(shù)學(xué)總復(fù)習(xí) 函數(shù)的奇偶性教案 理_第3頁
第3頁 / 共5頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高三數(shù)學(xué)總復(fù)習(xí) 函數(shù)的奇偶性教案 理》由會員分享,可在線閱讀,更多相關(guān)《2022年高三數(shù)學(xué)總復(fù)習(xí) 函數(shù)的奇偶性教案 理(5頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、2022年高三數(shù)學(xué)總復(fù)習(xí) 函數(shù)的奇偶性教案 理 教材分析 函數(shù)的奇偶性是函數(shù)的重要性質(zhì),是對函數(shù)概念的深化.它把自變量取相反數(shù)時(shí)函數(shù)值間的關(guān)系定量地聯(lián)系在一起,反映在圖像上為:偶函數(shù)的圖像關(guān)于y軸對稱,奇函數(shù)的圖像關(guān)于坐標(biāo)原點(diǎn)成中心對稱.這樣,就從數(shù)、形兩個(gè)角度對函數(shù)的奇偶性進(jìn)行了定量和定性的分析.教材首先通過對具體函數(shù)的圖像及函數(shù)值對應(yīng)表歸納和抽象,概括出了函數(shù)奇偶性的準(zhǔn)確定義.然后,為深化對概念的理解,舉出了奇函數(shù)、偶函數(shù)、既是奇函數(shù)又是偶函數(shù)的函數(shù)和非奇非偶函數(shù)的實(shí)例.最后,為加強(qiáng)前后聯(lián)系,從各個(gè)角度研究函數(shù)的性質(zhì),講清了奇偶性和單調(diào)性的聯(lián)系.這節(jié)課的重點(diǎn)是函數(shù)奇偶性的定義,難點(diǎn)是根

2、據(jù)定義判斷函數(shù)的奇偶性. 教學(xué)目標(biāo) 1. 通過具體函數(shù),讓學(xué)生經(jīng)歷奇函數(shù)、偶函數(shù)定義的討論,體驗(yàn)數(shù)學(xué)概念的建立過程,培養(yǎng)其抽象的概括能力. 2. 理解、掌握函數(shù)奇偶性的定義,奇函數(shù)和偶函數(shù)圖像的特征,并能初步應(yīng)用定義判斷一些簡單函數(shù)的奇偶性. 3. 在經(jīng)歷概念形成的過程中,培養(yǎng)學(xué)生歸納、抽象概括能力,體驗(yàn)數(shù)學(xué)既是抽象的又是具體的. 任務(wù)分析 這節(jié)內(nèi)容學(xué)生在初中雖沒學(xué)過,但已經(jīng)學(xué)習(xí)過具有奇偶性的具體的函數(shù):正比例函數(shù)y=kx,反比例函數(shù),(k≠0),二次函數(shù)y=ax2,(a≠0),故可在此基礎(chǔ)上,引入奇、偶函數(shù)的概念,以便于學(xué)生理解.在引入概念時(shí)始終結(jié)合具體函數(shù)的圖像,以增加直觀性,

3、這樣更符合學(xué)生的認(rèn)知規(guī)律,同時(shí)為闡述奇、偶函數(shù)的幾何特征埋下了伏筆.對于概念可從代數(shù)特征與幾何特征兩個(gè)角度去分析,讓學(xué)生理解:奇函數(shù)、偶函數(shù)的定義域是關(guān)于原點(diǎn)對稱的非空數(shù)集;對于在有定義的奇函數(shù)y=f(x),一定有f(0)=0;既是奇函數(shù),又是偶函數(shù)的函數(shù)有f(x)=0,x∈R.在此基礎(chǔ)上,讓學(xué)生了解:奇函數(shù)、偶函數(shù)的矛盾概念———非奇非偶函數(shù).關(guān)于單調(diào)性與奇偶性關(guān)系,引導(dǎo)學(xué)生拓展延伸,可以取得理想效果. 教學(xué)設(shè)計(jì) 一、問題情景 1. 觀察如下兩圖,思考并討論以下問題: (1)這兩個(gè)函數(shù)圖像有什么共同特征? (2)相應(yīng)的兩個(gè)函數(shù)值對應(yīng)表是如何體現(xiàn)這些特征的? 可以看到兩個(gè)函數(shù)的

4、圖像都關(guān)于y軸對稱.從函數(shù)值對應(yīng)表可以看到,當(dāng)自變量x取一對相反數(shù)時(shí),相應(yīng)的兩個(gè)函數(shù)值相同. 對于函數(shù)f(x)=x2,有f(-3)=9=f(3),f(-2)=4=f(2),f(-1)=1=f(1).事實(shí)上,對于R內(nèi)任意的一個(gè)x,都有f(-x)=(-x)2=x2=f(x).此時(shí),稱函數(shù)y=x2為偶函數(shù). 2. 觀察函數(shù)f(x)=x和f(x)=的圖像,并完成下面的兩個(gè)函數(shù)值對應(yīng)表,然后說出這兩個(gè)函數(shù)有什么共同特征. 可以看到兩個(gè)函數(shù)的圖像都關(guān)于原點(diǎn)對稱.函數(shù)圖像的這個(gè)特征,反映在解析式上就是:當(dāng)自變量x取一對相反數(shù)時(shí),相應(yīng)的函數(shù)值f(x)也是一對相反數(shù),即對任一x∈R都有f(-x)=-f

5、(x).此時(shí),稱函數(shù)y=f(x)為奇函數(shù). 二、建立模型 由上面的分析討論引導(dǎo)學(xué)生建立奇函數(shù)、偶函數(shù)的定義 1. 奇、偶函數(shù)的定義 如果對于函數(shù)f(x)的定義域內(nèi)任意一個(gè)x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫作奇函數(shù). 如果對于函數(shù)f(x)的定義域內(nèi)任意一個(gè)x,都有f(-x)=f(x),那么函數(shù)f(x)就叫作偶函數(shù). 2. 提出問題,組織學(xué)生討論 (1)如果定義在R上的函數(shù)f(x)滿足f(-2)=f(2),那么f(x)是偶函數(shù)嗎? (f(x)不一定是偶函數(shù)) (2)奇、偶函數(shù)的圖像有什么特征? (奇、偶函數(shù)的圖像分別關(guān)于原點(diǎn)、y軸對稱) (3)奇、偶函數(shù)的定

6、義域有什么特征? (奇、偶函數(shù)的定義域關(guān)于原點(diǎn)對稱) 三、解釋應(yīng)用 [例 題] 1. 判斷下列函數(shù)的奇偶性. 注:①規(guī)范解題格式;②對于(5)要注意定義域x∈(-1,1]. 2. 已知:定義在R上的函數(shù)f(x)是奇函數(shù),當(dāng)x>0時(shí),f(x)=x(1+x),求f(x)的表達(dá)式. 解:(1)任取x<0,則-x>0,∴f(-x)=-x(1-x), 而f(x)是奇函數(shù),∴f(-x)=-f(x).∴f(x)=x(1-x). (2)當(dāng)x=0時(shí),f(-0)=-f(0),∴f(0)=-f(0),故f(0)=0. 3. 已知:函數(shù)f(x)是偶函數(shù),且在(-∞,0)上是減函數(shù),判斷f(

7、x)在(0,+∞)上是增函數(shù),還是減函數(shù),并證明你的結(jié)論. 解:先結(jié)合圖像特征:偶函數(shù)的圖像關(guān)于y軸對稱,猜想f(x)在(0,+∞)上是增函數(shù),證明如下: 任取x1>x2>0,則-x1<-x2<0. ∵f(x)在(-∞,0)上是減函數(shù),∴f(-x1)>f(-x2). 又f(x)是偶函數(shù),∴f(x1)>f(x2). ∴f(x)在(0,+∞)上是增函數(shù). 思考:奇函數(shù)或偶函數(shù)在關(guān)于原點(diǎn)對稱的兩個(gè)區(qū)間上的單調(diào)性有何關(guān)系? [練 習(xí)] 1. 已知:函數(shù)f(x)是奇函數(shù),在[a,b]上是增函數(shù)(b>a>0),問f(x)在[-b,-a]上的單調(diào)性如何. 2. f(x)=-x3|x|的大致

8、圖像可能是( ?。? 3. 函數(shù)f(x)=ax2+bx+c,(a,b,c∈R),當(dāng)a,b,c滿足什么條件時(shí),(1)函數(shù)f(x)是偶函數(shù).(2)函數(shù)f(x)是奇函數(shù). 4. 設(shè)f(x),g(x)分別是R上的奇函數(shù)和偶函數(shù),并且f(x)+g(x)=x(x+1),求f(x),g(x)的解析式. 四、拓展延伸 1. 有既是奇函數(shù),又是偶函數(shù)的函數(shù)嗎?若有,有多少個(gè)? 2. 設(shè)f(x),g(x)分別是R上的奇函數(shù),偶函數(shù),試研究: (1)F(x)=f(x)·g(x)的奇偶性. (2)G(x)=|f(x)|+g(x)的奇偶性. 3. 已知a∈R,f(x)=a-,試確定a的值,使f(x)是奇函數(shù). 4. 一個(gè)定義在R上的函數(shù),是否都可以表示為一個(gè)奇函數(shù)與一個(gè)偶函數(shù)的和的形式? 點(diǎn) 評 這篇案例設(shè)計(jì)由淺入深,由具體的函數(shù)圖像及對應(yīng)值表,抽象概括出了奇、偶函數(shù)的定義,符合學(xué)生的認(rèn)知規(guī)律,有利于學(xué)生理解和掌握.應(yīng)用深化的設(shè)計(jì)層層遞進(jìn),深化了學(xué)生對奇、偶函數(shù)概念的理解和應(yīng)用.拓展延伸為學(xué)生思維能力、創(chuàng)新能力的培養(yǎng)提供了平臺.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!