《2022年高中化學(xué) 2.2.1共價鍵與分子的空間構(gòu)型教案 魯教版選修3》由會員分享,可在線閱讀,更多相關(guān)《2022年高中化學(xué) 2.2.1共價鍵與分子的空間構(gòu)型教案 魯教版選修3(5頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、2022年高中化學(xué) 2.2.1共價鍵與分子的空間構(gòu)型教案 魯教版選修3
【教學(xué)目標(biāo)】
1. 理解雜化軌道理論的主要內(nèi)容,掌握三種主要的雜化軌道類型;
2. 學(xué)會用雜化軌道原理解釋常見分子的成鍵情況與空間構(gòu)型過程與方法:
【教學(xué)重點(diǎn)】
理解雜化軌道理論的主要內(nèi)容,掌握三種主要的雜化軌道類型
【教學(xué)難點(diǎn)】
理解雜化軌道理論的主要內(nèi)容,掌握三種主要的雜化軌道類型
【教學(xué)方法】
采用圖表、比較、討論、歸納、綜合的方法進(jìn)行教學(xué)
【教學(xué)過程】
【課題引入】
在宏觀世界中,花朵、蝴蝶、冰晶等諸多物質(zhì)展現(xiàn)出規(guī)則與和諧的美。科學(xué)巨匠愛因斯坦曾感嘆:“在宇宙的秩序與和諧面前,人類不能不在內(nèi)
2、心里發(fā)出由衷的贊嘆,激起無限的好奇。”實(shí)際上,宏觀的秩序與和諧源于微觀的規(guī)則與對稱。
通常,不同的分子具有不同的空間構(gòu)型。例如,甲烷分子呈正四面體形、氨分子呈三角錐形、苯環(huán)呈正六邊形。那么,這些分子為什么具有不同的空間構(gòu)型呢?
【思考】
美麗的鮮花、冰晶、蝴蝶與微觀粒子的空間構(gòu)型有關(guān)嗎?
【活動探究】
你能身邊的材料動手制作水分子、甲烷、氨氣、氯氣的球棍模型嗎?
【過渡】
我們知道,共價鍵具有飽和性和方向性,所以原子以共價鍵所形成的分子具有一定的空間構(gòu)型。
【板書】
一、一些典型分子的空間構(gòu)型
(一) 甲烷分子的形成及立體構(gòu)型
【聯(lián)想質(zhì)疑】
研究證實(shí),甲烷(CH4)分子
3、中的四個C—H鍵的鍵角均為l09.5o,從而形成非常規(guī)則的正四面體構(gòu)型。原子之間若要形成共價鍵,它們的價電子中應(yīng)當(dāng)有未成對的電子。碳原子的價電子排布為2s22p2,也就是說,它只有兩個未成對的2p電子,若碳原子與氫原子結(jié)合,則應(yīng)形成CH2;即使碳原子的一個2s電子受外界條件影響躍遷到2p空軌道,使碳原子具有四個未成對電子,它與四個氫原子形成的分子也不應(yīng)當(dāng)具有規(guī)則的正四面體結(jié)構(gòu)。那么,甲烷分子的正四面體構(gòu)型是怎樣形成的呢?
【過渡】
為了解決這一矛盾,鮑林提出了雜化軌道理論,
【閱讀教材40頁】
【板書】
1. 雜化原子軌道
在外界條件影響下,原子內(nèi)部能量相近的原子軌道重新組合的過
4、程叫做原子軌道的雜化,組合后形成的一組新的原子軌道,叫做雜化原子軌道,簡稱雜化軌道。
【思考與交流】
甲烷分子的軌道是如何形成的呢?
形成甲烷分子時,中心原子的2s和2px,2py,2pz等四條原子軌道發(fā)生雜化,形成一組新的軌道,即四條sp3雜化軌道,這些sp3雜化軌道不同于s軌道,也不同于p軌道。
根據(jù)參與雜化的s軌道與p軌道的數(shù)目,除了有sp3雜化外,還有sp2 雜化和sp雜化,sp2 雜化軌道表示由一個s軌道與兩個p軌道雜化形成的,sp雜化軌道表示由一個s軌道與一個p軌道雜化形成的
【板書】
2. 常見的SP雜化過程
(1)sp3雜化
【闡述】
5、
雜化軌道在角度分布上比單純的S或P軌道在某一方向上更集中(比較圖2-2-2中的S、P軌道和雜化后形成的sp
,雜化軌道),從而使它在與其他原子的原子軌道成鍵時重疊的程度更大,形成的共價鍵更牢固。由于甲烷分子中碳原子的雜化軌道是由一個2s軌道和三個2p軌道重新組合而成的,故稱這種雜化為sp3雜化形成的四個雜化軌道則稱為sp3雜化軌道。鮑林還根據(jù)精確計(jì)算得知每兩個sp3雜化軌道的夾角為l09.5o。由于這四個雜化軌道的能量相同,根據(jù)洪特規(guī)則,碳原子的價電子以自旋方向相同的方式分占各個軌道。因此,當(dāng)碳原子與氫原子成鍵時,碳原子中每個雜化軌道的一個未成對電子與一個氫原子的1s電子配對形成一個共價鍵
6、,這樣所形成的四個共價鍵是等同的,從而使甲烷分子具有正四面體構(gòu)型,
【過渡】
s軌道與p軌道的雜化(簡稱sp型雜化)有多種情況
【板書】
(2)SP雜化:一個s軌道和一個P軌道雜化可形成兩個sp雜化軌道,這種雜化稱為sp1雜化
直線型(BeCl2)
【交流與討論】
用雜化軌道理論分析乙炔分子的成鍵情況
(3)sp2雜化
平面正三角形(BF3)
【交流與討論】
用雜化軌道理論分析乙烯分子的成鍵情況
【交流·研討】
氮原子的價電子排布為2s22p3,,三個2p軌道中各有一個未成對電子,可分別與一個氫原子的ls電子形成一個盯鍵
7、。如果真是如此,那么三個2p軌道相互垂直,所形成的氨分子中N—H鍵間的鍵角應(yīng)約為90o。但是,實(shí)驗(yàn)測得氨分子中N—H鍵的鍵角為107.30o。試解釋其中的原因,并與同學(xué)們進(jìn)行交流。
【闡述】
在形成氨分子時,氮原子的2s和2p原子軌道也發(fā)生了sp,雜化,生成四個sp3雜化軌道。在所生成的四個Sp3雜化軌道中,有三個軌道各含有一個未成對電子,可分別與一個氫原子的1s電子形成一個σ鍵,另一個sp3雜化軌道中已有兩個電子(孤對電子),不能再與氫原子形成σ鍵了。所以,一個氮原子只能與三個氫原子結(jié)合,形成氨分子。
【總結(jié)評價】
應(yīng)用軌道雜化理論,探究分子的立體結(jié)構(gòu)。
化學(xué)式
雜化軌道數(shù)
雜化軌道類型
分子結(jié)構(gòu)
CH4
C2H4
BF3
CH2O
C2H2
【板書設(shè)計(jì)】
一、一些典型分子的立體結(jié)構(gòu)
(一) 甲烷分子的形成及立體構(gòu)型
1. 雜化原子軌道
2. 常見的SP雜化過程
(1)sp3雜化
(2)SP雜化
(3)sp2雜化