2020屆高考數(shù)學(xué)大二輪復(fù)習(xí) 層級二 專題一 函數(shù)與導(dǎo)數(shù) 第3講 導(dǎo)數(shù)的簡單應(yīng)用教學(xué)案
《2020屆高考數(shù)學(xué)大二輪復(fù)習(xí) 層級二 專題一 函數(shù)與導(dǎo)數(shù) 第3講 導(dǎo)數(shù)的簡單應(yīng)用教學(xué)案》由會員分享,可在線閱讀,更多相關(guān)《2020屆高考數(shù)學(xué)大二輪復(fù)習(xí) 層級二 專題一 函數(shù)與導(dǎo)數(shù) 第3講 導(dǎo)數(shù)的簡單應(yīng)用教學(xué)案(15頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、 第3講 導(dǎo)數(shù)的簡單應(yīng)用 [考情考向·高考導(dǎo)航] 1.此部分內(nèi)容是高考命題的熱點內(nèi)容.在選擇題、填空題中多考查導(dǎo)數(shù)的幾何意義,難度較?。? 2.應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值、最值,多在選擇題、填空題最后幾題的位置考查,難度屬中等偏上,屬綜合性問題.有時也常在解答題的第一問中考查,難度中檔. [真題體驗] 1.(2019·全國Ⅱ卷)曲線y=2sin x+cos x在點(π,-1)處的切線方程為( ) A.x-y-π-1=0 B.2x-y-2π-1=0 C.2x+y-2π+1=0 D.x+y-π+1=0 解析:C [∵y′=2cos x-sin x,∴切線斜率k
2、=2cos π-sin π=-2, ∴在點(π,-1)處的切線方程為y+1=-2(x-π),即2x+y-2π+1=0.] 2.(全國Ⅱ卷)若x=-2是函數(shù)f(x)=(x2+ax-1)·ex-1的極值點,則f(x)的極小值為( ) A.-1 B.-2e-3 C.5e-3 D.1 解析:A [f′(x)=[x2+(a+2)x+a-1]·ex-1, 則f′(-2)=[4-2(a+2)+a-1]·e-3=0?a=-1, 則f(x)=(x2-x-1)·ex-1,f′(x)=(x2+x-2)·ex-1, 令f′(x)=0,得x=-2或x=1, 當x<-2或x>1時,f′(x)>0;
3、 當-2<x<1時,f′(x)<0, 則f(x)極小值為f(1)=-1.] 3.(2018·天津卷)已知函數(shù)f(x)=exln x,f′(x)為f(x)的導(dǎo)函數(shù),則f′(1)的值為________. 解析:由函數(shù)的解析式可得:f′(x)=ex×ln x+ex×=ex(ln x+), 則:f′(1)=e1×(ln 1+)=e.即f′(1)的值為e. 答案:e 4.(2019·天津卷)已知a∈R,設(shè)函數(shù)f(x)=若關(guān)于x的不等式f(x)≥0在R上恒成立,則a的取值范圍為( ) A.[0,1] B.[0,2] C.[0,e] D.[1,e] 解析:C [首先f(0)≥0,即
4、a≥0, 當0≤a≤1時,f(x)=x2-2ax+2a=(x-a)2+2a-a2≥2a-a2=a(2-a)>0, 當a<1時,f(1)=1>0, 故當a≥0時,x2-2ax+2a≥0在(-∞,1]上恒成立; 若x-aln x≥0在(1,+∞)上恒成立,即a≤在(1,+∞)上恒成立, 令g(x)=,則g′(x)=, 易知x=e為函數(shù)g(x)在(1,+∞)唯一的極小值點、也是最小值點, 故g(x)max=g(e)=e,所以a≤e. 綜上可知,a的取值范圍是[0,e].故選C.] [主干整合] 1.導(dǎo)數(shù)的幾何意義 函數(shù)y=f(x)在點x=x0處的導(dǎo)數(shù)值就是曲線y=f(x)在點(
5、x0,f(x0))處的切線的斜率,其切線方程是y-f(x0)=f′(x0)(x-x0). 2.導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系 (1)f′(x)>0是f(x)為增函數(shù)的充分不必要條件,如函數(shù)f(x)=x3在(-∞,+∞)上單調(diào)遞增,但f′(x)≥0. (2)f′(x)≥0是f(x)為增函數(shù)的必要不充分條件,當函數(shù)在某個區(qū)間內(nèi)恒有f′(x)=0時,則f(x)為常函數(shù),函數(shù)不具有單調(diào)性. 3.可導(dǎo)函數(shù)極值的理解 (1)函數(shù)在定義域上的極大值與極小值的大小關(guān)系不確定,也有可能極小值大于極大值. (2)對于可導(dǎo)函數(shù)f(x),“f(x)在x=x0處的導(dǎo)數(shù)f′(x)=0”是“f(x)在x=x0處取得極值
6、”的必要不充分條件. (3)注意導(dǎo)函數(shù)的圖象與原函數(shù)圖象的關(guān)系,導(dǎo)函數(shù)由正變負的零點是原函數(shù)的極大值點,導(dǎo)函數(shù)由負變正的零點是原函數(shù)的極小值點. 4.函數(shù)的極值與最值 (1)函數(shù)的極值是局部范圍內(nèi)討論的問題,函數(shù)的最值是對整個定義域而言的,是在整個范圍內(nèi)討論的問題. (2)函數(shù)在其定義區(qū)間的最大值、最小值最多有一個,而函數(shù)的極值可能不止一個,也可能沒有. (3)閉區(qū)間上連續(xù)的函數(shù)一定有最值,開區(qū)間內(nèi)的函數(shù)不一定有最值,若有唯一的極值,則此極值一定是函數(shù)的最值. 熱點一 導(dǎo)數(shù)的幾何意義 [例1] (1)(2019·全國Ⅲ卷)已知曲線y=aex+xln x在點(1,ae)處的切線
7、方程為y=2x+b,則( ) A.a(chǎn)=e,b=-1 B.a(chǎn)=e,b=1 C.a(chǎn)=e-1,b=1 D.a(chǎn)=e-1,b=-1 [解析] D [y′=aex+ln x+1,k=y(tǒng)′|x=1=ae+1, ∴切線方程為y-ae=(ae+1)(x-1), 即y=(ae+1)x-1. 又∵切線方程為y=2x+b, ∴即a=e-1,b=-1.故選D.] (2)(2019·成都二模)已知曲線C1:y2=tx(y>0,t>0)在點M處的切線與曲線C2:y=ex+1-1也相切,則tln的值為( ) A.4e2 B.8e C.2 D.8 [解析] D [曲線C1:y=,y′
8、=. 當x=時,y′=,切線方程為y-2=, 化簡為y=x+1.① 與曲線C2相切,設(shè)切點為(x0,y0), y′|x=x0=ex0+1=,x0=ln-1, 那么y0=ex0+1-1=-1, 切線方程為y-=, 化簡為y=x-ln+-1,② ①②是同一方程, 所以-ln+-1=1?ln=, 即t=4,那么tln=4ln e2=8,故選D.] 求曲線y=f(x)的切線方程的三種類型及方法 (1)已知切點P(x0,y0),求y=f(x)過點P的切線方程:求出切線的斜率f′(x0),由點斜式寫出方程. (2)已知切線的斜率為k,求y=f(x)的切線方程: 設(shè)切點P(x
9、0,y0),通過方程k=f′(x0)解得x0,再由點斜式寫出方程. (3)已知切線上一點(非切點),求y=f(x)的切線方程: 設(shè)切點P(x0,y0),利用導(dǎo)數(shù)求得切線斜率f′(x0),然后由斜率公式求得切線斜率,列方程(組)解得x0,再由點斜式或兩點式寫出方程. (1)(2019·江蘇卷)在平面直角坐標系xOy中,點A在曲線y=ln x上,且該曲線在點A處的切線經(jīng)過點(-e,-1)(e為自然對數(shù)的底數(shù)),則點A的坐標是________. 解析:導(dǎo)數(shù)運算及切線的理解應(yīng)注意的問題: 一是利用公式求導(dǎo)時要特別注意除法公式中分子的符號,防止與乘法公式混淆. 二是直線與曲線公共點的個數(shù)
10、不是切線的本質(zhì),直線與曲線只有一個公共點,直線不一定是曲線的切線,同樣,直線是曲線的切線,則直線與曲線可能有兩個或兩個以上的公共點. 設(shè)點A(x0,y0),則y0=ln x0.又y′=, 當x=x0時,y′=, 點A在曲線y=ln x上的切線為y-y0=(x-x0), 即y-ln x0=-1, 代入點(-e,-1),得-1-ln x0=-1, 即x0ln x0=e, 考查函數(shù)H(x)=xln x,當x∈(0,1)時,H(x)<0,當x∈(1,+∞)時,H(x)>0, 且H′(x)=ln x+1,當x>1時,H′(x)>0,H(x)單調(diào)遞增, 注意到H(e)=e,故x0ln x
11、0=e存在唯一的實數(shù)根x0=e,此時y0=1, 故點A的坐標為A(e,1). 答案:(e,1) (2)(2019·煙臺三模)函數(shù)f(x)=exsin x的圖象在點(0,f(0))處的切線方程是________. 解析:由f(x)=exsin x,得f′(x)=exsin x+excos x,所以f(0)=0且f′(0)=1,則切線的斜率為1,切點坐標為(0,0),所以切線方程為y=x. 答案:y=x 熱點二 利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性 邏輯 推理 素養(yǎng) 邏輯推理——分類與整合思想研究函數(shù)的單調(diào)性 含參數(shù)的函數(shù)的單調(diào)性問題一般要分類討論,常見有以下幾種可能:①方程f′(x)=
12、0是否有根;②若f′(x)=0有根,求出根后是否在定義域內(nèi);③若根在定義域內(nèi)且有兩個,比較根的大小是常見的分類方法. [例2] (1)(2019·青島三模)若函數(shù)f(x)=-x2+x+1在區(qū)間上單調(diào)遞減,則實數(shù)a的取值范圍是____________. [解析] 由已知得f′(x)=x2-ax+1,∵函數(shù)f(x)在區(qū)間上單調(diào)遞減,∴f′(x)≤0在區(qū)間上恒成立, ∴即 解得a≥,∴實數(shù)a的取值范圍為. [答案] (2)(2019·吉林三模節(jié)選)已知函數(shù)f(x)=ln x+ax+1+-1,當-≤a≤0時,討論f(x)的單調(diào)性. [解] f(x)的定義域為(0,+∞), f′(x)
13、=+a-= =. ①當a=0時,f′(x)=,此時,在(0,1)上f′(x)<0,f(x)單調(diào)遞減,在(1,+∞)上f′(x)>0,f(x)單調(diào)遞增; ②當-≤a<0時,f′(x)=. (ⅰ)當-=1,即a=-時,f′(x)=-≤0在(0,+∞)上恒成立. 所以f(x)在(0,+∞)上單調(diào)遞減; (ⅱ)當-<a<0時,-<1,此時在(0,1),上f′(x)<0,f(x)單調(diào)遞減,在上f′(x)>0,f(x)單調(diào)遞增. 綜上所述:當a=0時,f(x)在(0,1)上單調(diào)遞減,f(x)在(1,+∞)上單調(diào)遞增;當-<a<0時,f(x)在(0,1),上單調(diào)遞減,f(x)在上單調(diào)遞增;當a
14、=-時f(x)在(0,+∞)上單調(diào)遞減. 求解或討論函數(shù)單調(diào)性有關(guān)問題的解題策略 討論函數(shù)的單調(diào)性其實就是討論不等式的解集的情況.大多數(shù)情況下,這類問題可以歸結(jié)為一個含有參數(shù)的一元二次不等式的解集的討論: (1)在能夠通過因式分解求出不等式對應(yīng)方程的根時,依據(jù)根的大小進行分類討論. (2)在不能通過因式分解求出根的情況時,根據(jù)不等式對應(yīng)方程的判別式進行分類討論. [注意] 討論函數(shù)的單調(diào)性是在函數(shù)的定義域內(nèi)進行的,千萬不要忽視了定義域的限制. (2019·廣州二模)已知x=1是f(x)=2x++ln x的一個極值點. (1)求函數(shù)f(x)的單調(diào)遞減區(qū)間. (2)設(shè)函數(shù)g
15、(x)=f(x)-,若函數(shù)g(x)在區(qū)間[1,2]內(nèi)單調(diào)遞增,求a的取值范圍. 解:(1)f(x)的定義域為(0,+∞), f′(x)=2-+,x∈(0,+∞). 因為x=1是f(x)=2x++ln x的一個極值點, 所以f′(1)=0,即2-b+1=0. 解得b=3,經(jīng)檢驗,適合題意,所以b=3. 因為f′(x)=2-+=, 解f′(x)<0,得0<x<1. 所以函數(shù)f(x)的單調(diào)遞減區(qū)間為(0,1]. (2)g(x)=f(x)-=2x+ln x-(x>0), g′(x)=2++(x>0). 因為函數(shù)g(x)在[1,2]上單調(diào)遞增, 所以g′(x)≥0在[1,2]上恒
16、成立,即2++≥0在[1,2]上恒成立,所以a≥-2x2-x在[1,2]上恒成立, 所以a≥(-2x2-x)max,x∈[1,2]. 因為在[1,2]上,(-2x2-x)max=-3,所以a≥-3. 熱點三 利用導(dǎo)數(shù)研究函數(shù)的極(最)值 [例3] (2019·銀川二模)已知函數(shù)f(x)=ln x-ax2+(a-2)x. (1)若f(x)在x=1處取得極值,求a的值. (2)求函數(shù)y=f(x)在[a2,a]上的最大值. [審題指導(dǎo)] (1)要求a的值,只需要令f′(1)=0即可. (2)要求f(x)的最大值,就要根據(jù)與區(qū)間[a2,a]的關(guān)系分類討論,依據(jù)單調(diào)性求解. [解析]
17、(1)因為f(x)=ln x-ax2+(a-2)x,所以函數(shù)的定義域為(0,+∞). 所以f′(x)=-2ax+(a-2)==. 因為f(x)在x=1處取得極值,即f′(1)=-(2-1)(a+1)=0,解得a=-1. 當a=-1時,在上f′(x)<0,在(1,+∞)上f′(x)>0, 此時x=1是函數(shù)f(x)的極小值點,所以a=-1. (2)因為a2<a,所以0<a<1,f′(x)=-, 因為x∈(0,+∞),所以ax+1>0,所以f(x)在上單調(diào)遞增,在上單調(diào)遞減. ①當0<a≤時,f(x)在[a2,a]上單調(diào)遞增,所以f(x)max=f(a)=ln a-a3+a2-2a;
18、 ②當即<a<時,f(x)在上單調(diào)遞增,在上單調(diào)遞減, 所以f(x)max=f=-ln 2-+=-1-ln 2; ③當≤a2,即≤a<1時,f(x)在[a2,a]上單調(diào)遞減,所以f(x)max=f(a2)=2ln a-a5+a3-2a2. 綜上所述,當0<a≤時,函數(shù)y=f(x)在[a2,a]上的最大值是ln a-a3+a2-2a; 當<a<時,函數(shù)y=f(x)在[a2,a]上的最大值是-1-ln 2; 當≤a<1時,函數(shù)y=f(x)在[a2,a]上的最大值是2ln a-a5+a3-2a2. 利用導(dǎo)數(shù)研究函數(shù)極值、最值的方法 (1)若求極值,則先求方程f′(x)=0的根,再檢
19、查f′(x)在方程根的左、右函數(shù)值的符號. (2)若已知極值大小或存在情況,則轉(zhuǎn)化為已知方程f′(x)=0根的大小或存在情況來求解. (3)求函數(shù)f(x)在閉區(qū)間[a,b]上的最值時,在得到極值的基礎(chǔ)上,結(jié)合區(qū)間端點的函數(shù)值f(a),f(b)與f(x)的各極值進行比較得到函數(shù)的最值. 幾點注意: ①求函數(shù)極值時,一定要注意分析導(dǎo)函數(shù)的零點是不是函數(shù)的極值點; ②求函數(shù)最值時,務(wù)必將極值與端點值比較得出最大(小)值; ③對于含參數(shù)的函數(shù)解析式或區(qū)間求極值、最值問題,務(wù)必要對參數(shù)分類討論. (2019·惠州二模)已知函數(shù)f(x)= (1)求f(x)在區(qū)間(-∞,1)上的極小值和
20、極大值點; (2)求f(x)在[-1,e](e為自然對數(shù)的底數(shù))上的最大值. 解析:(1)當x<1時,f′(x)=-3x2+2x=-x(3x-2),令f′(x)=0,解得x=0或x=. 當x變化時,f′(x),f(x)的變化情況如下表: x (-∞,0) 0 f′(x) - 0 + 0 - f(x) 極小值 極大值 故當x=0時,函數(shù)f(x)取得極小值為f(0)=0,函數(shù)f(x)的極大值點為x=. (2)①當-1≤x<1時,由(1)知,函數(shù)f(x)在[-1,0)和上單調(diào)遞減,在上單調(diào)遞增. 因為f(-1)=2,f=,f(0)=0
21、,所以f(x)在[-1,1)上的最大值為2. ②當1≤x≤e,f(x)=aln x, 當a≤0時,f(x)≤0;當a>0時,f(x)在[1,e]上單調(diào)遞增, 則f(x)在[1,e]上的最大值為f(e)=a. 故當a≥2時,f(x)在[-1,e]上的最大值為a; 當a<2時,f(x)在[-1,e]上的最大值為2. 限時50分鐘 滿分76分 一、選擇題(本大題共6小題,每小題5分,共30分) 1.(2020·南開中學(xué)質(zhì)檢)已知函數(shù)f(x)=g(x)+2x且曲線y=g(x)在x=1處的切線為y=2x+1,則曲線y=f(x)在x=1處的切線的斜率為( ) A.2
22、 B.4 C.6 D.8 解析:B [∵曲線y=g(x)在點(1,g(1))處的切線方程為y=2x+1,∴g′(1)=2.∵函數(shù)f(x)=g(x)+2x,∴f′(x)=g′(x)+2,∴f′(1)=g′(1)+2,∴f′(1)=2+2=4,即曲線y=f(x)在x=1處的切線的斜率為4.故選B.] 2.(2019·南京三模)若函數(shù)f(x)=kx-ln x在區(qū)間(1,+∞)上單調(diào)遞增,則k的取值范圍是( ) A.(-∞,-2] B.(-∞,-1] C.[2,+∞) D.[1,+∞) 解析:D [因為f(x)=kx-ln x,所以f′(x)=k-.因為f(x)在區(qū)間(1,+∞
23、)上單調(diào)遞增,所以當x>1時,f′(x)=k-≥0恒成立,即k≥在區(qū)間(1,+∞)上恒成立.因為x>1,所以0<<1,所以k≥1.故選D.] 3.(2019·保定三模)函數(shù)f(x)=x3-3ax-a在(0,1)內(nèi)有最小值,則a的取值范圍是( ) A.[0,1) B.(-1,1) C. D.(0,1) 解析:D [f′(x)=3x2-3a=3(x2-a). 當a≤0時,f′(x)>0, ∴f(x)在(0,1)內(nèi)單調(diào)遞增,無最小值. 當a>0時,f′(x)=3(x-)(x+). 當x∈(-∞,-)和(,+∞)時,f(x)單調(diào)遞增; 當x∈(-,)時,f(x)單調(diào)遞減, 所
24、以當<1,即0<a<1時,f(x)在(0,1)內(nèi)有最小值.] 4.(2020·長沙模擬)已知函數(shù)f(x)=x3+ax2+3x+1有兩個極值點,則實數(shù)a的取值范圍是( ) A.(,+∞) B.(-∞,-) C.(-,) D.(-∞,-)∪(,+∞) 解析:D [f′(x)=x2+2ax+3. 由題意知方程f′(x)=0有兩個不相等的實數(shù)根, 所以Δ=4a2-12>0, 解得a>或a<-.] 5.(2019·長春質(zhì)量監(jiān)測)已知函數(shù)f(x)是定義在R上的函數(shù),且滿足f′(x)+f(x)>0,其中f′(x)為f(x)的導(dǎo)函數(shù),設(shè)a=f(0),b=2f(ln 2),c=ef(1),
25、則a,b,c的大小關(guān)系是( ) A.c>b>a B.a(chǎn)>b>c C.c>a>b D.b>c>a 解析:A [令g(x)=exf(x),則g′(x)=ex[f(x)+f′(x)]>0,所以函數(shù)g(x)在定義域R上單調(diào)遞增,從而g(0)<g(ln 2)<g(1),得f(0)<2f(ln 2)<ef(1),即a<b<c.故選A.] 6.(山東卷)若函數(shù)y=f(x)的圖象上存在兩點,使得函數(shù)的圖象在這兩點處的切線互相垂直,則稱y=f(x)具有T性質(zhì).下列函數(shù)中具有T性質(zhì)的是( ) A.y=sin x B.y=ln x C.y=ex D.y=x3 解析:A [當y=sin x時
26、,y′=cos x,cos 0·cos π=-1,所以在函數(shù)y=sin x圖象存在兩點x=0,x=π使條件成立,故A正確;函數(shù)y=ln x,y=ex,y=x3的導(dǎo)數(shù)值均非負,不符合題意,故選A.] 二、填空題(本大題共2小題,每小題5分,共10分) 7.(2019·廈門三模)已知直線y=kx-2與曲線y=xln x相切,則實數(shù)k的值為____________. 解析:由y=xln x知y′=ln x+1,設(shè)切點為(x0,x0ln x0),則切線方程為y-x0ln x0=(ln x0+1)(x-x0),因為切線y=kx-2過定點(0,-2),所以-2-x0ln x0=(ln x0+1)(0
27、-x0),解得x0=2,故k=1+ln 2. 答案:1+ln 2 8.(2019·濰坊三模)設(shè)函數(shù)f(x)=ln x-ax2-bx,若x=1是f(x)的極大值點,則a的取值范圍是____________. 解析:f(x)的定義域為(0,+∞),f′(x)=-ax-b, 由f′(1)=0,得b=1-a. ∴f′(x)=-ax+a-1==-. ①若a≥0,當0<x<1時,f′(x)>0,f(x)單調(diào)遞增; 當x>1時,f′(x)<0,f(x)單調(diào)遞減; 所以x=1是f(x)的極大值點. ②若a<0,由f′(x)=0,得x=1或x=-. 因為x=1是f(x)的極大值點, 所以-
28、>1,解得-1<a<0. 綜合①②得a的取值范圍是(-1,+∞). 答案:(-1,+∞) 三、解答題(本大題共3小題,每小題12分,共36分) 9.(2018·北京卷)設(shè)函數(shù)f(x)=[ax2-(3a+1)x+3a+2]ex. (1)若曲線y=f(x)在點(2,f(2))處的切線斜率為0,求a; (2)若f(x)在x=1處取得極小值,求a的取值范圍. 解:(1)∵f(x)=[ax2-(3a+1)x+3a+2]ex ∴f′(x)=[ax2-(a+1)x+1]ex ∴f′(2)=(2a-1)e2=0 ∴a= (2)f′(x)=(ax-1)(x-1)ex ①當a=0時,令f′
29、(x)=0得x=1 f′(x),f(x)隨x變化如下表: x (-∞,1) 1 (1,+∞) f′(x) + 0 - f(x) 極大值 ∴f(x)在x=1處取得極大值(舍) ②當a>0時,令f′(x)=0得x1=,x2=1 a.當x1=x2,即a=1時, f′(x)=(x-1)2ex≥0 ∴f(x)在R上單調(diào)遞增 ∴f(x)無極值(舍) b.當x1>x2,即0<a<1時,f′(x),f(x)隨x變化如下表: x (-∞,1) 1 f′(x) + 0 - 0 + f(x) 極大值 極小值 ∴f
30、(x)在x=1處取極大值(舍) c.當x1<x2,即a>1時 f′(x),f(x)隨x變化如下表: x 1 (1,+∞) f′(x) + 0 - 0 + f(x) 極大值 極小值 ∴f(x)在x=1處取極小值 即a>1成立 ③當a<0時,令f′(x)=0得x1=,x2=1 f′(x),f(x)隨x變化如下表: x 1 (1,+∞) f′(x) - 0 + 0 - f(x) 極小值 極大值 ∴f(x)在x=1處取極大值(舍) 綜上所述:a的取值范圍為(1,+∞).
31、10.(2019·全國Ⅲ卷)已知函數(shù)f(x)=2x3-ax2+b. (1)討論f(x)的單調(diào)性. (2)是否存在a,b,使得f(x)在區(qū)間[0,1]的最小值為-1且最大值為1?若存在,求出a,b的所有值;若不存在,說明理由. 解析:這是一道常規(guī)的函數(shù)導(dǎo)數(shù)不等式和綜合題,題目難度比往年降低了不少.考查的函數(shù)單調(diào)性,最大值最小值這種基本概念的計算.思考量不大,由計算量補充. (1)對f(x)=2x3-ax2+b求導(dǎo)得f′(x)=6x2-2ax=6x.所以有當a<0時,區(qū)間上單調(diào)遞增,區(qū)間上單調(diào)遞減,(0,+∞)區(qū)間上單調(diào)遞增; 當a=0時,(-∞,+∞)區(qū)間上單調(diào)遞增; 當a>0時,(
32、-∞,0)區(qū)間上單調(diào)遞增,區(qū)間上單調(diào)遞減,區(qū)間上單調(diào)遞增. (2)若f(x)在區(qū)間[0,1]有最大值1和最小值-1,所以若a<0,區(qū)間上單調(diào)遞增,區(qū)間上單調(diào)遞減,(0,+∞)區(qū)間上單調(diào)遞增; 此時在區(qū)間[0,1]上單調(diào)遞增,所以f(0)=-1,f(1)=1代入解得b=-1,a=0,與a<0矛盾,所以a<0不成立. 若a=0,(-∞,+∞)區(qū)間上單調(diào)遞增;在區(qū)間[0.1].所以f(0)=-1,f(1)=1代入解得. 若0<a≤2,(-∞,0)區(qū)間上單調(diào)遞增,區(qū)間上單調(diào)遞減,區(qū)間上單調(diào)遞增. 即f(x)在區(qū)間單調(diào)遞減,在區(qū)間單調(diào)遞增,所以區(qū)間[0,1]上最小值為f 而f(0)=b,f(
33、1)=2-a+b≥f(0),故所以區(qū)間[0,1]上最大值為f(1). 即相減得2-a+=2,即a(a-3)(a+3)=0,又因為0<a≤2,所以無解. 若2<a≤3,(-∞,0)區(qū)間上單調(diào)遞增,區(qū)間上單調(diào)遞減,區(qū)間上單調(diào)遞增. 即f(x)在區(qū)間單調(diào)遞減,在區(qū)間單調(diào)遞增,所以區(qū)間[0,1]上最小值為f 而f(0)=b,f(1)=2-a+b≤f(0),故所以區(qū)間[0,1]上最大值為f(0). 即相減得=2,解得x=3,又因為2<a≤3,所以無解. 若a>3,(-∞,0)區(qū)間上單調(diào)遞增,區(qū)間上單調(diào)遞減,區(qū)間上單調(diào)遞增. 所以有f(x)區(qū)間[0,1]上單調(diào)遞減,所以區(qū)間[0,1]上最
34、大值為f(0),最小值為f(1) 即解得. 綜上得或. 答案:(1)見詳解;(2)或. 11.(2018·江蘇卷)記f′(x),g′(x)分別為函數(shù)f(x),g(x)的導(dǎo)函數(shù).若存在x0∈R,滿足f(x0)=g(x0)且f′(x0)=g′(x0),則稱x0為函數(shù)f(x)與g(x)的一個“S點”. (1)證明:函數(shù)f(x)=x與g(x)=x2+2x-2不存在“S點”; (2)若函數(shù)f(x)=ax2-1與g(x)=ln x存在“S點”,求實數(shù)a的值; (3)已知函數(shù)f(x)=-x2+a,g(x)=.對任意a>0,判斷是否存在b>0,使函數(shù)f(x)與g(x)在區(qū)間(0,+∞)內(nèi)存在“S
35、點”,并說明理由. 解:(1)f′(x)=1,g′(x)=2x+2 若存在,則有 根據(jù)②得到x0=-代入①不符合,因此不存在“S點”. (2)f′(x)=2ax,g′(x)= 根據(jù)題意有 且有x0>0 根據(jù)②得到x0=代入①得到a=. (3)f′(x)=-2x,g′(x)= 轉(zhuǎn)化為-x+a+=0 ∵0<x0<1 ∴-x+x+a(x0-1)+2x=0?m(x)=-x+3x+a(x0-1)=0 轉(zhuǎn)化為m(x)存在零點x0,0<x0<1 又m(0)=-a<0,m(1)=2 ∴m(x)恒存在零點大于0小于1 ∴對任意a>0均存在b>0,使得存在“S點”. - 15 -
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。